
It is also necessary to make changes to some of the power supplies. The greatest change is the
power supply that shunts the current from Q4 to Q3 which must be increased to 2000A and power
leads capable of handling this current. Depending on the transfer function of the trim quadrupoles,
one or two may need to have a larger power supply. Finally, the shunt supply from QD to QDA
must be increased by about 60A and the shunt supply from QF to Q7 must be increased about 34A
for the even insertion and 24A for the odd insertion.
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Figure Captions
Fig. 1 The root beta and dispersion functions along the insertion for the 4, 8 and 12 o’clock inser-
tions (even).

Fig. 2 For a scattering angle of 70µrad and a beam of 5π mm-mrad at 250Gev the scattered parti-
cles position is compared with the beam size along the even insertion.

Fig. 3 The root beta and dispersion functions along the insertion for the 2, 6 and 10 o’clock inser-
tions (odd).

Fig. 4 For a scattering angle of 70µrad and a beam of 5π mm-mrad at 250Gev the scattered parti-
cles position is compared with the beam size along the odd insertion.



Similarly, the odd insertion will also have two Roman Pots, but these will be placed at positions
different relative to the even insertion. The first Roman Pot will be 72m from the crossing point,
between Q3 and Q4, with an  of 36m. The second Roman Pot will be at 144m from the cross-
ing point with an  of 87m. Fig 3 gives the twiss beta functions and dispersion as a function of
position along the insertion. Note,  is 195m for this solution. Fig. 4 gives  along the inser-
tion and Table 2 gives the quadrupole strengths, gradients at top energy and the current require-
ments.

Since, there is no adiabatic path from the standard  injection optics to either of the
above large β* optics, we must inject with these optics when an elastic scattering experiment is
carried out. These optics will remain unchanged throughout the entire run which may have impli-
cations for other experiments. Examining the beta functions given in Figures 1 and 3 shows large
beta functions of less than 160m at Q4 where the beam pipe is standard 7.2cm diameter. Fortu-
nately, the dispersion is small in this region. Additionally, scraping will be needed to reduce the
emittance of the beam. These constraints give an acceptance criteria which could affect other
experiments going on else where in the ring.

Conclusion
The RHIC insertion is tunable for elastic scattering experiments, with a resulting Leff of about
58m or 87m depending on the insertion. Since, this is a perturbation of normal operations at
RHIC, we had to forgo the large margins on the field strengths of Q4, Q5 and Q6 insertion qua-
drupoles and there corresponding trims.

Table 2: Quadrupole strengths, 2, 6 and 10 o’clock insertion (odd)

Quadrupoles Strength [m-2] Gradient [T/m] Current [A]

Q1 0.0428970 36.012 3765

Q2 0.0436961 36.683 3835

Q3 0.0420354 35.289 3689

Q4, trim 0.0408204 -34.268 143

Q5, trim 0.0454000 38.113 159

Q6, trim 0.0363980 30.556 127

Q7 0.0924858 77.642 5151

Q4, Q5, Q6, main 0.1000000 83.950 5600

QFA (Q9I, Q8O) 0.0742885 62.365 4111

QDA (Q8I, Q9O) 0.0753824 63.284 4172

QF 0.0817048 68.591 4527

QD 0.0844124 70.864 4682

Leff
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becomes rather poor.

Placing limits on the trim quadrupoles determines the maximum β* that can be achieved. This can
be helped by adjusting the current through Q4, Q5 and Q6. Additionally, the limits on the shunt
supplies between Q3 to Q2 and Q2 to Q1 play a role.

There are two kinds of insertions in RHIC, which differ due to the anti-symmetry of the lattice.
Interchanging the x and y twiss functions of one kind of insertion gives the twiss functions of the
other kind (this is not true for the dispersion functions). Thus, we have two solutions for the two
kinds of insertions, one for either the 4, 8 or 12 o’clock insertions (referred to as even) and a dif-
ferent solution for either the 2, 6 or 10 o’clock insertions (referred to as odd).

For the even insertion, there are places for two Roman Pots. The first place is in the long warm
drift space (between Q3 and Q4) with a moderate  of 27m at about 54m from the crossing
point. The second will be placed between Q9 and Q10 at about 149m from the crossing point for a
larger  of 58m. The  is about 155m as shown in Fig. 1. Furthermore, the  is not zero
since the Roman Pots are not at the  phase positions where n is an integer. This was
necessary in order to find free space to place the Roman Pots. Fig. 2 shows the  as a function
of position along the insertion, and Table 1 gives the quadrupole strengths, gradients at top energy
(Bρ is 839.5 Tm) and the currents required. Note, the trim quadrupoles assume that the transfer
function is 0.24 Tm-1/A, however, the RHIC design manual quotes 0.283 Tm-1/A. If we con-
strained the solution with the former number, then, β* drops to 80m.

Table 1: Quadrupole strengths, 4, 8 and 12 o’clock insertion (even)

Quadrupoles Strength [m-2] Gradient [T/m] Current [A]

Q1 0.0420471 35.299 3690

Q2 0.0437010 36.695 3836

Q3 0.0438937 36.849 3853

Q4, trim -0.0434749 -36.497 -152

Q5, trim 0.0454000 38.113 159

Q6, trim 0.0300736 25.247 105

Q7 0.0928157 77.919 5171

Q4, Q5, Q6, main 0.1000000 83.950 5600

QFA (Q9I, Q8O) 0.0743917 62.452 4117

QDA (Q8I, Q9O) 0.0755708 63.442 4183

QF 0.0818697 68.730 4537

QD 0.0845650 70.992 4691
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large as possible.

Tuning the insertion.
Tuning the RHIC insertion requires many constraints ranging from dynamical beam behavior to
the hardware constraints for implementation. We consider the beam dynamics first. The RHIC
insertion[2] uses an antisymmetric quadrupole arrangement about the interaction point. This
implies that  and  where s is the coordinate along the beam and

 is at the crossing point. The strengths of the quadrupoles in the insertion are found such
that: (1) the crossing point parameters needed for the experiment are realized and (2) beta and dis-
persion functions match the corresponding arc functions at the ends of the insertion.

There are 9 quadrupoles in each insertion and 2 quadrupoles in the arc that are available for tun-
ing. The limits on the quadrupole strengths and power supplies are set by the standard operation
of the ability to tune the insertion from  to . These limits are the determining
factor on the maximum β* that can be achieved in RHIC. To tune the insertion for elastic scatter-
ing, we impose the following conditions

and matching the functions to the arcs

where νx and νy are the operating tunes of RHIC and η* is the horizontal dispersion at the cross-
ing point.

Besides the above conditions, there are also the following constraints on the quadrupoles, power
supplies and lead end currents that needs to be considered[3-4]:

(1) limits on the trim quadrupole strengths, determined by the 150A power supply, the given
quench current and the transfer function1;

(2) the shunt power supply and lead ends between Q3 to Q2 and Q2 to Q1 where the power
supply and the leads limit current to 150A;

(3) the maximum current through the Q4, Q5 and Q6 main quadrupoles, limited by the quench
current2;

(4) the shunt power supply between QF to Q7;
(5) the shunt power supply between QD to QDA.

Without limits on the shunt supplies from QF to Q7 or QD to QDA leads to solutions requiring up
to about 60A more current than is planned. If limits are imposed on these currents, the solution

1. As of this writing, the trim quadrupoles transfer function has not been measured.
2. By adjusting the current in these three quadrupoles, we can reduce the current needed in their correspond-
ing trim quadrupoles.

βx s( ) βy s–( )= αx s( ) α– y s–( )=
s 0=

β∗ 1m= β∗ 10m=

η∗ 0=

νx 28.187=

νy 29.179=

a11 0=
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Abstract
An elastic scattering experiment measures the angle of the outgoing particle after collision. This
scattering angle is too small to be measured by conventional means since the particles never leave
the beam pipe. To observe and measure the scattering angle, we use the optics of the insertion as a
magnifier. This requires special tuning of the insertion leading to large β* operation. We present a
tuning scheme at RHIC for an elastic scattering experiment and discuss some of the hardware
implications in the implementation.

Introduction
An elastic scattering experiment requires special tuning of the insertion. During a collision, the
scattering angles are so small, the scattered particles remain in the beam pipe, perhaps within the
beam itself. By using the optics of the insertion, the scattering angle can be magnified enough to
be observed. Undesirable effects, such as magnification of the collision position and errors intro-
duced by dispersion must be minimized. Since, the ideal RHIC lattice has no vertical dispersion,
the dispersion effects can be minimized by measuring scattering in the vertical direction (denoted
by y).

The two beams will collide at the interaction point in a local coordinate system at a vertical dis-
tance, y’, from the reference orbit and scatter with the slope, y’. These particles will then pass
through the various magnetic lenses in the insertion until they reach a detector (Roman Pot). The
detector measures the positions of the scattered particles with respect to the reference orbit. This
position can be determined from[1]

where β* and α* are the twiss parameters at the interaction point, Ψ is the phase advance from the
interaction point to the Roman Pot and βRP and αRP are the twiss parameters at the Roman Pot.

Since, the Roman Pots can only measure yRP, the above equation can be reduced to

where  and the magnification is

. The goal in tuning the RHIC insertion is to set  to zero and make  as
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